Close Menu
    Trending
    • Latest casualties of the cost of living the crisis: Rover and Mittens
    • How AI will fuel your car ─ Digital Geochemistry | by Michael Parmo | Jun, 2025
    • Supervised & Unsupervised Learning | by The ML Girl | Jun, 2025
    • LLMs Finally Learn to Say “I Don’t Know” — And It’s a Game-Changer | by ArXiv In-depth Analysis | Jun, 2025
    • Unsupervised Learning: A Simple Revision Guide | by Samriddhi Saxena | Jun, 2025
    • Top 5 SASE Solutions for Modern Enterprise Security
    • Paper Insights: Masked Autoencoders that listen | by Shanmuka Sadhu | Jun, 2025
    • Statistical Inference: Your Friendly Guide to Making Sense of Data | by Timothy Kimutai | Jun, 2025
    Finance StarGate
    • Home
    • Artificial Intelligence
    • AI Technology
    • Data Science
    • Machine Learning
    • Finance
    • Passive Income
    Finance StarGate
    Home»Machine Learning»Statistical Inference: Your Friendly Guide to Making Sense of Data | by Timothy Kimutai | Jun, 2025
    Machine Learning

    Statistical Inference: Your Friendly Guide to Making Sense of Data | by Timothy Kimutai | Jun, 2025

    FinanceStarGateBy FinanceStarGateJune 15, 2025No Comments2 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    import numpy as np
    from scipy import stats
    import matplotlib.pyplot as plt
    import pandas as pd

    # Generate practical information
    np.random.seed(42)

    # Espresso drinkers (n=50): barely larger productiveness scores
    coffee_drinkers = np.random.regular(85, 12, 50)

    # Non-coffee drinkers (n=45): baseline productiveness scores
    non_coffee_drinkers = np.random.regular(80, 11, 45)

    # Create a DataFrame for simple evaluation
    information = pd.DataFrame({
    ‘productiveness’: np.concatenate([coffee_drinkers, non_coffee_drinkers]),
    ‘group’: [‘Coffee’] * len(coffee_drinkers) + [‘No Coffee’] * len(non_coffee_drinkers)
    })

    print(“☕ COFFEE vs PRODUCTIVITY ANALYSIS ☕”)
    print(“=” * 50)

    # Descriptive statistics
    coffee_stats = information[data[‘group’] == ‘Espresso’][‘productivity’]
    no_coffee_stats = information[data[‘group’] == ‘No Espresso’][‘productivity’]

    print(f”Espresso Drinkers (n={len(coffee_stats)}):”)
    print(f” Imply: {coffee_stats.imply():.2f}”)
    print(f” Std Dev: {coffee_stats.std():.2f}”)

    print(f”nNon-Espresso Drinkers (n={len(no_coffee_stats)}):”)
    print(f” Imply: {no_coffee_stats.imply():.2f}”)
    print(f” Std Dev: {no_coffee_stats.std():.2f}”)

    # Step 1: Arrange hypotheses
    print(f”n📋 HYPOTHESIS TESTING”)
    print(“H0: No distinction in productiveness between teams (μ₁ = μ₂)”)
    print(“H1: Espresso drinkers have totally different productiveness (μ₁ ≠ μ₂)”)

    # Step 2: Carry out the take a look at
    t_stat, p_val = stats.ttest_ind(coffee_stats, no_coffee_stats)

    print(f”n🧮 TEST RESULTS:”)
    print(f”T-statistic: {t_stat:.3f}”)
    print(f”P-value: {p_val:.6f}”)

    # Step 3: Make resolution
    alpha = 0.05
    if p_val print(f”n✅ DECISION: Reject H0 (p = {p_val:.6f} print(“There IS a statistically vital distinction between teams!”)
    else:
    print(f”n❌ DECISION: Fail to reject H0 (p = {p_val:.6f} ≥ {alpha})”)
    print(“There’s NO statistically vital distinction between teams.”)

    # Step 4: Calculate confidence intervals for each teams
    def calculate_ci(information, confidence=0.95):
    n = len(information)
    imply = np.imply(information)
    std = np.std(information, ddof=1)
    se = std / np.sqrt(n)

    alpha = 1 – confidence
    t_crit = stats.t.ppf(1 – alpha/2, n – 1)

    margin_error = t_crit * se
    ci_lower = imply – margin_error
    ci_upper = imply + margin_error

    return ci_lower, ci_upper, margin_error

    # Calculate 95% CIs
    coffee_ci = calculate_ci(coffee_stats)
    no_coffee_ci = calculate_ci(no_coffee_stats)

    print(f”n📊 95% CONFIDENCE INTERVALS:”)
    print(f”Espresso Drinkers: [{coffee_ci[0]:.2f}, {coffee_ci[1]:.2f}]”)
    print(f”Non-Espresso Drinkers: [{no_coffee_ci[0]:.2f}, {no_coffee_ci[1]:.2f}]”)

    # Examine if intervals overlap
    if coffee_ci[1] print(“🚫 Confidence intervals do not overlap – robust proof of distinction!”)
    else:
    print(“🤝 Confidence intervals overlap – some uncertainty concerning the distinction.”)

    # Step 5: Impact measurement
    effect_size = (coffee_stats.imply() – no_coffee_stats.imply()) / np.sqrt(
    ((len(coffee_stats) – 1) * coffee_stats.var() + (len(no_coffee_stats) – 1) * no_coffee_stats.var()) /
    (len(coffee_stats) + len(no_coffee_stats) – 2)
    )

    print(f”n📏 EFFECT SIZE (Cohen’s d): {effect_size:.3f}”)
    if abs(effect_size) effect_interp = “negligible”
    elif abs(effect_size) effect_interp = “small”
    elif abs(effect_size) effect_interp = “medium”
    else:
    effect_interp = “giant”
    print(f”Interpretation: {effect_interp} impact”)

    # Visualization
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))

    # Field plot
    information.boxplot(column=’productiveness’, by=’group’, ax=ax1)
    ax1.set_title(‘Productiveness Scores by Group’)
    ax1.set_ylabel(‘Productiveness Rating’)

    # Histogram with confidence intervals
    ax2.hist(coffee_stats, alpha=0.7, label=’Espresso Drinkers’, bins=15, coloration=’brown’)
    ax2.hist(no_coffee_stats, alpha=0.7, label=’Non-Espresso Drinkers’, bins=15, coloration=’lightblue’)

    # Add confidence interval bars
    ax2.errorbar(coffee_stats.imply(), 5, xerr=coffee_ci[2],
    fmt=’o’, coloration=’darkred’, capsize=5, capthick=2, label=’Espresso 95% CI’)
    ax2.errorbar(no_coffee_stats.imply(), 3, xerr=no_coffee_ci[2],
    fmt=’s’, coloration=’darkblue’, capsize=5, capthick=2, label=’No Espresso 95% CI’)

    ax2.set_xlabel(‘Productiveness Rating’)
    ax2.set_ylabel(‘Frequency’)
    ax2.set_title(‘Distribution of Productiveness Scores’)
    ax2.legend()
    ax2.grid(True, alpha=0.3)

    plt.tight_layout()
    plt.present()



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleMachine Learning in Finance: Next-Gen Budget Forecasting | by Kavika Roy | Jun, 2025
    Next Article Paper Insights: Masked Autoencoders that listen | by Shanmuka Sadhu | Jun, 2025
    FinanceStarGate

    Related Posts

    Machine Learning

    How AI will fuel your car ─ Digital Geochemistry | by Michael Parmo | Jun, 2025

    June 16, 2025
    Machine Learning

    Supervised & Unsupervised Learning | by The ML Girl | Jun, 2025

    June 16, 2025
    Machine Learning

    LLMs Finally Learn to Say “I Don’t Know” — And It’s a Game-Changer | by ArXiv In-depth Analysis | Jun, 2025

    June 16, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    TOP COUNTERFEIT BANKNOTES,DRIVER’S LICENSE, CLONE CARDS AND PASSPORTS. | by Law | Feb, 2025

    February 21, 2025

    AI in Marketing: Personalization & Customer Insights You Can’t Ignore | by AI With Lil Bro shorts | May, 2025

    May 1, 2025

    5 Ways SMEs Can Start Their Digital Transformation Journey Today

    March 18, 2025

    CRA hits taxpayer with hefty ‘foreign property’ penalty

    March 6, 2025

    A Bird’s Eye View of Linear Algebra: The Basics

    May 30, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    Most Popular

    Fintech Company Stripe Invites Customers to Attend Meetings

    April 12, 2025

    Generación de las computadoras 1ª a la 5ª (resumen) | by Sharith Padilla | Mar, 2025

    March 1, 2025

    3 AI Tools to Help You Start a Profitable Solo Business

    May 10, 2025
    Our Picks

    OpenAI vs whereintheworld. To determine the best model to use on… | by Kyle Higginson | May, 2025

    May 21, 2025

    Top 21 MCP Servers to Supercharge Your AI Workflow with Enhanced Use Cases | by Baivab Mukhopadhyay | devdotcom | Apr, 2025

    April 22, 2025

    Understanding Skewness in Machine Learning: A Beginner’s Guide with Python Example | by Codes With Pankaj | Mar, 2025

    March 11, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2025 Financestargate.com All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.