Close Menu
    Trending
    • Datavault AI to Deploy AI-Driven HPC for Biofuel R&D
    • Bezos-Sánchez Wedding Draws Business, Protests to Venice
    • Abstract Classes: A Software Engineering Concept Data Scientists Must Know To Succeed
    • AWS Made 10x Easier Using AI. Smart Tools Are upgrading Cloud… | by AI With Lil Bro | Jun, 2025
    • Voltage Park Partners with VAST Data
    • Meta Plans to Release New Oakley, Prada AI Smart Glasses
    • Apply Sphinx’s Functionality to Create Documentation for Your Next Data Science Project
    • Mastering Prompting with DSPy: A Beginner’s Guide to Smarter LLMs | by Adi Insights and Innovations | Jun, 2025
    Finance StarGate
    • Home
    • Artificial Intelligence
    • AI Technology
    • Data Science
    • Machine Learning
    • Finance
    • Passive Income
    Finance StarGate
    Home»Machine Learning»What is a Data Pipeline? Your Complete Beginner’s Guide (2025) | by Timothy Kimutai | Jun, 2025
    Machine Learning

    What is a Data Pipeline? Your Complete Beginner’s Guide (2025) | by Timothy Kimutai | Jun, 2025

    FinanceStarGateBy FinanceStarGateJune 17, 2025No Comments2 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    import pandas as pd
    from google.analytics.data_v1beta import BetaAnalyticsDataClient
    from facebook_business.api import FacebookAdsApi
    import sqlite3
    from datetime import datetime, timedelta

    class MarketingPipeline:
    def __init__(self):
    self.ga_client = BetaAnalyticsDataClient()
    self.fb_api = FacebookAdsApi.init(access_token=”your_token”)
    self.db_connection = sqlite3.join(‘marketing_analytics.db’)

    def extract_google_analytics(self):
    “””Get web site visitors and conversion knowledge”””
    # That is simplified – actual GA4 API calls are extra complicated
    question = {
    ‘property’: ‘properties/your-property-id’,
    ‘dimensions’: [‘date’, ‘source’, ‘medium’],
    ‘metrics’: [‘sessions’, ‘conversions’, ‘revenue’],
    ‘date_ranges’: [{‘start_date’: ’30daysAgo’, ‘end_date’: ‘today’}]
    }

    response = self.ga_client.run_report(question)
    # Convert to DataFrame
    ga_data = pd.DataFrame([
    {
    ‘date’: row.dimension_values[0].worth,
    ‘supply’: row.dimension_values[1].worth,
    ‘medium’: row.dimension_values[2].worth,
    ‘periods’: row.metric_values[0].worth,
    ‘conversions’: row.metric_values[1].worth,
    ‘income’: row.metric_values[2].worth
    }
    for row in response.rows
    ])
    return ga_data

    def extract_facebook_ads(self):
    “””Get Fb marketing campaign efficiency”””
    from facebook_business.adobjects.adaccount import AdAccount

    ad_account = AdAccount(‘act_your-account-id’)
    campaigns = ad_account.get_campaigns(fields=[
    ‘name’, ‘spend’, ‘impressions’, ‘clicks’, ‘conversions’
    ])

    fb_data = pd.DataFrame([{
    ‘campaign_name’: campaign[‘name’],
    ‘spend’: float(marketing campaign[‘spend’]),
    ‘impressions’: int(marketing campaign[‘impressions’]),
    ‘clicks’: int(marketing campaign[‘clicks’]),
    ‘conversions’: int(marketing campaign.get(‘conversions’, 0))
    } for marketing campaign in campaigns])

    return fb_data

    def transform_and_analyze(self, ga_data, fb_data):
    “””Calculate ROI and buyer lifetime worth”””
    # Clear Google Analytics knowledge
    ga_data[‘revenue’] = pd.to_numeric(ga_data[‘revenue’], errors=’coerce’)
    ga_data[‘conversions’] = pd.to_numeric(ga_data[‘conversions’], errors=’coerce’)

    # Calculate metrics
    ga_summary = ga_data.groupby([‘source’, ‘medium’]).agg({
    ‘periods’: ‘sum’,
    ‘conversions’: ‘sum’,
    ‘income’: ‘sum’
    }).reset_index()

    ga_summary[‘conversion_rate’] = ga_summary[‘conversions’] / ga_summary[‘sessions’]
    ga_summary[‘revenue_per_session’] = ga_summary[‘revenue’] / ga_summary[‘sessions’]

    # Calculate Fb ROI
    fb_data[‘roi’] = (fb_data[‘conversions’] * 50 – fb_data[‘spend’]) / fb_data[‘spend’] # Assuming $50 common order worth
    fb_data[‘cost_per_conversion’] = fb_data[‘spend’] / fb_data[‘conversions’].change(0, 1)

    return ga_summary, fb_data

    def load_to_dashboard(self, ga_summary, fb_data):
    “””Save outcomes and set off dashboard replace”””
    # Save to database
    ga_summary.to_sql(‘ga_performance’, self.db_connection, if_exists=’change’)
    fb_data.to_sql(‘fb_performance’, self.db_connection, if_exists=’change’)

    # Create abstract report
    report = {
    ‘date’: datetime.now().strftime(‘%Y-%m-%d’),
    ‘top_ga_source’: ga_summary.loc[ga_summary[‘revenue’].idxmax(), ‘supply’],
    ‘best_fb_campaign’: fb_data.loc[fb_data[‘roi’].idxmax(), ‘campaign_name’],
    ‘total_revenue’: ga_summary[‘revenue’].sum(),
    ‘total_ad_spend’: fb_data[‘spend’].sum()
    }

    # This might set off e mail alerts, Slack notifications, and so on.
    print(f”Pipeline accomplished: Generated ${report[‘total_revenue’]:.2f} income from ${report[‘total_ad_spend’]:.2f} advert spend”)
    return report

    # Run the pipeline
    if __name__ == “__main__”:
    pipeline = MarketingPipeline()

    # Extract knowledge
    ga_data = pipeline.extract_google_analytics()
    fb_data = pipeline.extract_facebook_ads()

    # Remodel knowledge
    ga_summary, fb_summary = pipeline.transform_and_analyze(ga_data, fb_data)

    # Load outcomes
    report = pipeline.load_to_dashboard(ga_summary, fb_summary)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleWhat is OpenAI o3 and How is it Different than other LLMs?
    Next Article LLaVA on a Budget: Multimodal AI with Limited Resources
    FinanceStarGate

    Related Posts

    Machine Learning

    AWS Made 10x Easier Using AI. Smart Tools Are upgrading Cloud… | by AI With Lil Bro | Jun, 2025

    June 18, 2025
    Machine Learning

    Mastering Prompting with DSPy: A Beginner’s Guide to Smarter LLMs | by Adi Insights and Innovations | Jun, 2025

    June 17, 2025
    Machine Learning

    The “Lazy” Way to Use DeepSeek to Make Money Online | by Tamal Krishna Chandra | Jun, 2025

    June 17, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    Movie Recommendation & Rating Prediction using KNN | by Akanksha Gupta | Feb, 2025

    February 26, 2025

    Building Real-World AI Apps with Google’s Gemini & Imagen | by Vipin Kumar | May, 2025

    May 28, 2025

    Revolutionizing Palm Oil Plantations: How AI and Drones are Cultivating Efficiency and Sustainability

    May 20, 2025

    Por que prever a saída de colaboradores é essencial para a saúde financeira da empresa. | by William Irineu | Apr, 2025

    April 1, 2025

    jhhhghgggg

    February 7, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    Most Popular

    Curse of Dimensionality. Before diving into my recent posts… | by Sudeep Chavare | Mar, 2025

    March 15, 2025

    5 CEOs Get Brutally Honest About Leadership in Today’s World

    June 12, 2025

    The Trolley Problem in AI Ethics: How Should Self-Driving Cars Decide? 🚗⚖️☣️ | by Ayush Rajput | Feb, 2025

    February 14, 2025
    Our Picks

    Mom’s Facebook Side Hustle Grew From $1k to $275k a Month

    June 8, 2025

    JPMorgan’s Jamie Dimon Hopes Elon Musk’s DOGE Is Successful

    February 25, 2025

    Focus on Your Health — or Your Startup Won’t Survive

    May 23, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2025 Financestargate.com All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.