Close Menu
    Trending
    • A First-Principles Guide to Multilingual Sentence Embeddings | by Tharunika L | Jun, 2025
    • Google, Spotify Down in a Massive Outage Affecting Thousands
    • Prediksi Kualitas Anggur dengan Random Forest — Panduan Lengkap dengan Python | by Gilang Andhika | Jun, 2025
    • How a 12-Year-Old’s Side Hustle Makes Nearly $50,000 a Month
    • Boost Your LLM Output and Design Smarter Prompts: Real Tricks from an AI Engineer’s Toolbox
    • Proposed Study: Integrating Emotional Resonance Theory into AI : An Endocept-Driven Architecture | by Tim St Louis | Jun, 2025
    • What’s the Highest Paid Hourly Position at Walmart?
    • Connecting the Dots for Better Movie Recommendations
    Finance StarGate
    • Home
    • Artificial Intelligence
    • AI Technology
    • Data Science
    • Machine Learning
    • Finance
    • Passive Income
    Finance StarGate
    Home»Machine Learning»Exploring AI-Driven Music Creation and Fine-Tuning in Python | by Biswarup Dutta | Apr, 2025
    Machine Learning

    Exploring AI-Driven Music Creation and Fine-Tuning in Python | by Biswarup Dutta | Apr, 2025

    FinanceStarGateBy FinanceStarGateApril 27, 2025No Comments3 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    The convergence of deep studying and audio synthesis has remodeled how we compose, remix, and fine-tune music. On this in-depth information, we’ll cowl every part — from low-level MIDI processing to state-of-the-art text-to-music fashions, customized fine-tuning, and deploying an interactive Streamlit app. Strap in for detailed code examples, architectural insights, and sensible suggestions so you’ll be able to construct your personal AI music studio totally in Python.

    Create an remoted setting and set up important packages:

    python3 -m venv music-env
    supply music-env/bin/activate

    # MIDI & audio processing
    pip set up pretty_midi mido pydub soundfile numpy scipy

    # Deep studying backends
    pip set up torch torchvision torchaudio

    # Generative music fashions
    pip set up magenta # Symbolic music (MusicVAE, PerformanceRNN)
    pip set up audiocraft # Meta’s MusicGen & AudioGen
    pip set up diffusers transformers speed up # Hugging Face Diffusers for AudioLDM2

    # Internet deployment
    pip set up streamlit

    2.1 Loading and Inspecting MIDI Recordsdata

    import pretty_midi

    def load_midi(path):
    pm = pretty_midi.PrettyMIDI(path)
    print(f"Loaded '{path}': tempo={pm.get_tempo_changes()[1][0]:.1f} BPM")
    for inst in pm.devices:
    print(f" {inst.identify} – {len(inst.notes)} notes")
    return pm

    pm = load_midi('examples/mozart_symphony.mid')

    2.2 Changing Audio to Spectrograms (for diffusion fashions)

    import torchaudio

    waveform, sr = torchaudio.load('examples/output.wav')
    # Create a Mel spectrogram
    mel_spec = torchaudio.transforms.MelSpectrogram(
    sample_rate=sr, n_mels=128, n_fft=1024, hop_length=256
    )(waveform)
    print(mel_spec.form) # [channels, n_mels, time_frames]

    3.1 Sampling with MusicVAE

    from magenta.fashions.music_vae import configs
    from magenta.fashions.music_vae.trained_model import TrainedModel
    import pretty_midi

    config = configs.CONFIG_MAP['hierdec-mel_16bar']
    mvae = TrainedModel(config, batch_size=4, checkpoint_dir_or_path=None)

    # Interpolate between two latent factors
    z1, z2 = mvae.encode([sequence1, sequence2])
    for alpha in [0.0, 0.25, 0.5, 0.75, 1.0]:
    seq = mvae.decode(z1*(1-alpha) + z2*alpha, size=64)[0]
    pm = pretty_midi.PrettyMIDI()
    instr = pretty_midi.Instrument(program=0)
    instr.notes.prolong(seq.notes)
    pm.devices.append(instr)
    pm.write(f'interp_{alpha:.2f}.mid')

    Key Factors

    • Hierarchical VAE: Learns multi-scale construction in melodies.
    • Latent interpolation: Clean morphing of musical phrases.

    4.1 Producing Music from Textual content Prompts

    from audiocraft.fashions import MusicGen

    # Select a bigger mannequin for richer high quality
    mannequin = MusicGen.get_pretrained('musicgen-medium')

    # Generate a jazzy bass groove
    wav = mannequin.generate("A mellow jazz bass line with brushed drums", length=20)

    # Save as WAV
    mannequin.save_wav(wav, 'jazz_bass.wav')

    4.2 Understanding the Structure

    • Codebook tokenizer: Quantizes audio into discrete tokens.
    • Transformer decoder: Autoregressively predicts codebook indices.
    • Upsampler: Converts codes again to waveform through a neural vocoder.

    5.1 One-Shot Textual content-to-Audio

    from diffusers import AudioLDMPipeline
    import torch
    import soundfile as sf

    pipe = AudioLDMPipeline.from_pretrained(
    "haoheliu/audioldm-m-full", variant="diffusers"
    ).to('cuda')

    out = pipe(
    "A serene piano solo with mushy reverb and mild dynamics",
    num_inference_steps=80,
    guidance_scale=3.0
    )
    audio = out.audios[0] # numpy array
    sf.write('piano_reverb.wav', audio, 24000)

    5.2 High quality-Tuning Your Personal Type

    1. Dataset: Gather pairs of
      (e.g., 10-50 examples).
    2. Preprocessing: Resample to 24 kHz, normalize amplitude.
    3. Coaching Loop:
    from diffusers import AudioLDMForConditionalGeneration, AudioLDMTokenizer
    from datasets import load_dataset
    from transformers import Coach, TrainingArguments

    mannequin = AudioLDMForConditionalGeneration.from_pretrained("haoheliu/audioldm-m")
    tokenizer = AudioLDMTokenizer.from_pretrained("haoheliu/audioldm-m")

    ds = load_dataset("csv", data_files={"practice":"captions.csv"})
    def prep(ex):
    ex['input_ids'] = tokenizer(ex['text']).input_ids
    ex['waveform'] = sf.learn(ex['wav_path'])[0]
    return ex

    train_ds = ds['train'].map(prep)
    args = TrainingArguments(
    output_dir="fine_tuned_audioldm",
    per_device_train_batch_size=1,
    learning_rate=2e-5,
    num_train_epochs=10,
    save_steps=200
    )
    coach = Coach(mannequin=mannequin, args=args, train_dataset=train_ds)
    coach.practice()

    6. Constructing the Streamlit Interface

    Beneath is a sturdy Streamlit app with reside era, file uploads for fine-tuning, and obtain choices:

    # app.py
    import streamlit as st
    from io import BytesIO
    import soundfile as sf
    from audiocraft.fashions import MusicGen
    from diffusers import AudioLDMPipeline

    st.set_page_config(page_title="AI Music Studio", format="extensive")
    st.title("AI Music Studio 🎶")

    # Sidebar controls
    model_choice = st.sidebar.selectbox("Mannequin", ["MusicGen-Medium", "AudioLDM2"])
    immediate = st.sidebar.text_area("Music Immediate", "A vivid digital arpeggio")
    length = st.sidebar.slider("Length (sec)", 5, 60, 15)
    if st.sidebar.button("Generate"):
    buffer = BytesIO()
    if model_choice.startswith("MusicGen"):
    mg = MusicGen.get_pretrained('musicgen-medium')
    wav = mg.generate(immediate, length=length)
    mg.save_wav(wav, buffer)
    else:
    pipe = AudioLDMPipeline.from_pretrained("haoheliu/audioldm-m-full").to('cuda')
    audioldm = pipe(immediate, num_inference_steps=60).audios[0]
    sf.write(buffer, audioldm, 24000, format='WAV')
    st.audio(buffer.getvalue(), format='audio/wav')
    st.download_button("Obtain Observe", information=buffer, file_name="monitor.wav", mime="audio/wav")

    # High quality-tuning add
    st.markdown("### High quality-Tune AudioLDM2")
    uploaded = st.file_uploader("Add CSV with textual content,wav paths", sort="csv")
    if uploaded:
    st.success("Prepared for fine-tuning! (See code snippet in repo)")

    st.markdown("#### Preview MIDI Instance")
    midi_file = st.file_uploader("Add a MIDI file", sort="mid")
    if midi_file:
    import pretty_midi
    pm = pretty_midi.PrettyMIDI(midi_file)
    st.write(pm.devices[0].notes[:5]) # Present first 5 notes

    7. Deployment Methods

    • Streamlit Cloud: Join your GitHub repo for fast deployment.
    • Docker:
    (.dockerfile)

    FROM python:3.10-slim
    COPY . /app
    WORKDIR /app
    RUN pip set up -r necessities.txt
    EXPOSE 8501
    ENTRYPOINT ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"

    • GPU Hosts: Use AWS/GCP with NVIDIA GPUs for faster generation.

    8. Next Steps & Advanced Topics

    • Real-Time Looping: Integrate WebAudio for browser-side live looping.
    • Hybrid Models: Combine symbolic (Magenta) and waveform (MusicGen) pipelines.
    • Customization: Build your own codebook or improve vocoder quality via adversarial training.

    Embark on your creative journey — whether you’re composing ambient soundtracks, crafting fresh beats, or fine-tuning the next viral hook, Python’s AI music ecosystem puts the studio at your fingertips!



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleBuilding Worlds with AI: Watch Three Civilizations Rise From Scratch | by Breakingthebot | Apr, 2025
    Next Article 09332705315 – شماره خاله #شماره خاله تهران #شماره خاله تهرانپارس
    FinanceStarGate

    Related Posts

    Machine Learning

    A First-Principles Guide to Multilingual Sentence Embeddings | by Tharunika L | Jun, 2025

    June 13, 2025
    Machine Learning

    Prediksi Kualitas Anggur dengan Random Forest — Panduan Lengkap dengan Python | by Gilang Andhika | Jun, 2025

    June 13, 2025
    Machine Learning

    Proposed Study: Integrating Emotional Resonance Theory into AI : An Endocept-Driven Architecture | by Tim St Louis | Jun, 2025

    June 13, 2025
    Add A Comment

    Comments are closed.

    Top Posts

    Putting Up A Paywall To Fight AI And Support My Family

    April 2, 2025

    How to Master the 5 Pillars of Entrepreneurial Excellence

    April 1, 2025

    What to Know Before Investing in a Pre-IPO Company

    April 24, 2025

    Comprehensive Guide to Dependency Management in Python

    March 7, 2025

    How to Succeed as a Planning-Driven Leader

    April 1, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    Most Popular

    5 Key Data and AI Innovations to Keep an Eye on in 2025

    April 17, 2025

    How to improve AP and invoice tasks

    May 28, 2025

    Title: Introduction to Machine Learning: A Beginner’s Guide | by Muhammad Hammad | Mar, 2025

    March 23, 2025
    Our Picks

    Building a Streamlit App for Deepfake Audio Detection and Multi-label Defect Prediction | by Ayesha Saeed | May, 2025

    May 4, 2025

    10 Charitable Organizations Entrepreneurs Should Support

    May 5, 2025

    Japanese-Chinese Translation with GenAI: What Works and What Doesn’t

    March 27, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2025 Financestargate.com All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.