Close Menu
    Trending
    • Should You Switch from Scikit-learn to PyTorch for GPU-Accelerated Machine Learning? | by ThamizhElango Natarajan | Jun, 2025
    • Before You Invest, Take These Steps to Build a Strategy That Works
    • 📚 ScholarMate: An AI-Powered Learning Companion for Academic Documents | by ARNAV GOEL | Jun, 2025
    • Redesigning Customer Interactions: Human-AI Collaboration with Agentic AI
    • Want to Monetize Your Hobby? Here’s What You Need to Do.
    • Hopfield Neural Network. The main takeaway of this paper is a… | by bhagya | Jun, 2025
    • Postman Unveils Agent Mode: AI-Native Development Revolutionizes API Lifecycle
    • The Hidden Dangers of Earning Risk-Free Passive Income
    Finance StarGate
    • Home
    • Artificial Intelligence
    • AI Technology
    • Data Science
    • Machine Learning
    • Finance
    • Passive Income
    Finance StarGate
    Home»Machine Learning»Parkinson Hastalığı Veri Setiyle Model Geliştirme ve R² Skorunu Yükseltme | by SAMET TUTAL | Apr, 2025
    Machine Learning

    Parkinson Hastalığı Veri Setiyle Model Geliştirme ve R² Skorunu Yükseltme | by SAMET TUTAL | Apr, 2025

    FinanceStarGateBy FinanceStarGateApril 8, 2025No Comments3 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    Parkinson hastalığı, sinir sistemi bozukluklarından biridir ve motor becerileri etkileyebilir. Bu yazıda, Parkinson hastalığı veri seti kullanarak Motor UPDRS (Unified Parkinson’s Illness Ranking Scale) skorunu tahmin etmek için bir mannequin geliştirdim ve bu modelin R² skorunu 0.89’e kadar nasıl yükselttiğimi adım adım anlatacağım.

    1. Veri Setini Anlamak
    Veri setimiz, Parkinson hastalığıyla ilgili birçok özelliği içeriyor. Bu özellikler, hastaların yaş, cinsiyet, motor take a look at zamanları ve birçok fizyolojik ölçümü içeriyor. Veri setinin başlıca sütunları şunlardır:

    topic#: Katılımcı ID

    age: Yaş

    intercourse: Cinsiyet

    motor_UPDRS: Motor UPDRS skoru (Hedef değişken)

    total_UPDRS: Toplam UPDRS skoru

    Diğer birçok fizyolojik özellik (örn. Jitter, Shimmer, RPDE)

    Modelimizi kurarken, motor_UPDRS skorunu tahmin etmeyi hedefledik. Bu, Parkinson hastalığına sahip bireylerin motor yeteneklerinin değerlendirilmesine yardımcı olur.

    2. Veri Ön İşleme
    Veri setindeki çeşitli değişkenlerin doğru bir şekilde işlenmesi, modelin başarısı için kritik öneme sahiptir.

    Sayısal değişkenler: Eksik değerler ortalama ile dolduruldu, ardından standardize edildi.

    Kategorik değişkenler: En sık değer ile dolduruldu, ardından OneHot Encoding uygulandı.

    Bu işlem, verideki tüm sütunları modelin “hazmetmesi” için uygun forma dönüştürdü.

    a. Yaş Gruplama
    Yaş, sürekli bir değişken olup, doğrusal olmayan ilişkiler barındırabilir. Bu yüzden, yaşları belirli gruplara ayırarak modelin daha iyi performans göstermesini sağladık. Aşağıdaki yaş aralıkları kullanıldı:

    40–49 yaş

    50–59 yaş

    60–69 yaş

    70–79 yaş

    80–89 yaş

    Bu gruplama, modelin farklı yaş gruplarındaki farklı davranışları daha iyi öğrenmesini sağladı.

    b. Kategorik ve Sayısal Değişkenlerin İşlenmesi
    Veri setinde bazı değişkenler sayısal, bazıları ise kategoriktir. Örneğin, age_group ve intercourse gibi kategorik değişkenler, makine öğrenmesi algoritmalarının daha iyi anlaması için one-hot encoding ile işlenmiştir. Sayısal değişkenler ise StandardScaler kullanılarak normalize edilmiştir.

    c. Eksik Verilerin İmputasyonu
    Veri setinde eksik veriler olabilir, bu yüzden eksik değerler ortalama (sayısal veriler için) veya en yaygın kategori (kategorik veriler için) ile doldurulmuştur. Bu, modelin eğitiminde veri kaybı yaşamadan sağlam bir sonuç elde etmemizi sağlamıştır.

    3. Mannequin Seçimi ve Eğitim
    a. Mannequin Seçimi
    Tahmin modelimiz olarak Random Forest Regressor kullandım. Random Forest, çok sayıda karar ağacından oluşan bir ensemble (toplu) yöntemidir ve çok güçlüdür. Bu modelin avantajları arasında yüksek doğruluk, overfitting’e karşı dayanıklılık ve özelliklerin etkileşimlerini iyi yakalama yeteneği bulunur.

    b. Eğitim ve Check Verisi Ayrımı
    Veri setini %80 eğitim ve %20 take a look at olarak ayırdık. Eğitim seti, modelin öğrenmesi için kullanılırken, take a look at seti modelin başarısını değerlendirmek için kullanıldı.

    c. Mannequin Eğitimi ve Değerlendirme
    Modeli eğittikten sonra, R² skoru hesapladık. R² skoru, modelin hedef değişkeni ne kadar iyi tahmin ettiğini gösteren bir metrik olup, 1’e yakın değerler çok iyi bir mannequin performansını ifade eder. Bu modelin R² skoru 0.89 oldu, bu da modelin çok yüksek doğrulukla tahminler yaptığı anlamına gelir.

    4. Sonuçlar
    Modelin R² skoru 0.91’e ulaşması, age grouping ve doğru özellik mühendisliği (özellikle sayısal ve kategorik değişkenlerin doğru şekilde işlenmesi) gibi adımların modelin başarısını artırmada önemli bir rol oynadığını gösteriyor.

    Bu sonuçlar, Parkinson hastalığına dair daha doğru ve güvenilir tahminler yapılmasına olanak tanır. Ayrıca, bu yaklaşım, başka tıbbi veri setleri ve farklı modelleme problemleri için de uygulanabilir.

    5. Sonraki Adımlar
    Bu modelin performansı daha da iyileştirilebilir. Örneğin:

    Hiperparametre optimizasyonu ile modelin ayarlarını daha verimli hale getirebilirsiniz.

    Farklı algoritmalar (Gradient Boosting, XGBoost, vb.) ile mannequin performansını karşılaştırabilirsiniz.

    Bu skor, modelin varyansın %89’unu açıkladığını gösteriyor.
    Yani artık modelimiz gerçekten hastanın motor UPDRS skorunu öngörmede güçlü bir araç.

    🧠 Neden Bu Kadar Etkili Oldu?
    Özellik mühendisliği netti: Gereksiz sütunlar çıkarıldı, kategorik/sayısal ayrımı doğru yapıldı.

    Pipeline ile işlemler otomatize edildi: Eksik değer doldurma, encoding ve scaling adımları sistematik biçimde yürütüldü.

    Random Forest doğru tercih oldu: Çoklu nonlineer ilişkileri yakalamada başarılı.

    📌 Sonuç
    Bu projede öğrendiğimiz en önemli ders: Basit ama düzenli bir yapılandırma bile mannequin performansında büyük sıçramalar yaratabiliyor.
    Her şey mannequin değil. Ön işleme, sütun seçimi, ve doğru değerlendirme metodları modelin kaderini belirliyor.



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleHow AI is Transforming DevOps in Software Development
    Next Article Return-to-Office Push Meets Employee Pushback — What’s Next?
    FinanceStarGate

    Related Posts

    Machine Learning

    Should You Switch from Scikit-learn to PyTorch for GPU-Accelerated Machine Learning? | by ThamizhElango Natarajan | Jun, 2025

    June 5, 2025
    Machine Learning

    📚 ScholarMate: An AI-Powered Learning Companion for Academic Documents | by ARNAV GOEL | Jun, 2025

    June 4, 2025
    Machine Learning

    Hopfield Neural Network. The main takeaway of this paper is a… | by bhagya | Jun, 2025

    June 4, 2025
    Add A Comment

    Comments are closed.

    Top Posts

    Outfit Your Team with Android Tablets for Just $75 Each

    May 17, 2025

    Desvendando o Aprendizado de Máquina: O Que Você Precisa Saber Sobre Aprendizado Supervisionado, Não Supervisionado e Regressão Linear | by andrefbrandao | Apr, 2025

    April 6, 2025

    Smart Anomaly Detection Framework for Satellite Images — technical details | by Talex Maxim (Taimax) | Mar, 2025

    March 30, 2025

    Vision Transformer on a Budget

    June 3, 2025

    Top Side Hustle in Your City? Here’s the Fastest-Growing Gig

    April 3, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    Most Popular

    The AI Revolution in Development: 11 Game-Changing Tools You Need to Try | by Madhavsingh | Mar, 2025

    March 23, 2025

    Amazon CEO Andy Jassy Says He Wants Fewer Middle Managers

    March 25, 2025

    How AI is Shaping the Future of Climate Data Collection and Analysis

    February 19, 2025
    Our Picks

    Unlock AI’s Money-Making Secrets: 7 Easy Ways to Boost Your Income Online! | by Make it or break it | Mar, 2025

    March 20, 2025

    10 Podcasts Every Entrepreneur Should Listen to

    February 13, 2025

    Startup’s autonomous drones precisely track warehouse inventories | MIT News

    February 10, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2025 Financestargate.com All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.