Close Menu
    Trending
    • Meta Plans to Release New Oakley, Prada AI Smart Glasses
    • Apply Sphinx’s Functionality to Create Documentation for Your Next Data Science Project
    • Mastering Prompting with DSPy: A Beginner’s Guide to Smarter LLMs | by Adi Insights and Innovations | Jun, 2025
    • Service Robotics: The Silent Revolution Transforming Our Daily Lives
    • Why New Tax Rules Could Be a Game Changer for Your Business
    • LLaVA on a Budget: Multimodal AI with Limited Resources
    • What is a Data Pipeline? Your Complete Beginner’s Guide (2025) | by Timothy Kimutai | Jun, 2025
    • What is OpenAI o3 and How is it Different than other LLMs?
    Finance StarGate
    • Home
    • Artificial Intelligence
    • AI Technology
    • Data Science
    • Machine Learning
    • Finance
    • Passive Income
    Finance StarGate
    Home»Machine Learning»What is a Data Pipeline? Your Complete Beginner’s Guide (2025) | by Timothy Kimutai | Jun, 2025
    Machine Learning

    What is a Data Pipeline? Your Complete Beginner’s Guide (2025) | by Timothy Kimutai | Jun, 2025

    FinanceStarGateBy FinanceStarGateJune 17, 2025No Comments2 Mins Read
    Share Facebook Twitter Pinterest LinkedIn Tumblr Reddit Telegram Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    import pandas as pd
    from google.analytics.data_v1beta import BetaAnalyticsDataClient
    from facebook_business.api import FacebookAdsApi
    import sqlite3
    from datetime import datetime, timedelta

    class MarketingPipeline:
    def __init__(self):
    self.ga_client = BetaAnalyticsDataClient()
    self.fb_api = FacebookAdsApi.init(access_token=”your_token”)
    self.db_connection = sqlite3.join(‘marketing_analytics.db’)

    def extract_google_analytics(self):
    “””Get web site visitors and conversion knowledge”””
    # That is simplified – actual GA4 API calls are extra complicated
    question = {
    ‘property’: ‘properties/your-property-id’,
    ‘dimensions’: [‘date’, ‘source’, ‘medium’],
    ‘metrics’: [‘sessions’, ‘conversions’, ‘revenue’],
    ‘date_ranges’: [{‘start_date’: ’30daysAgo’, ‘end_date’: ‘today’}]
    }

    response = self.ga_client.run_report(question)
    # Convert to DataFrame
    ga_data = pd.DataFrame([
    {
    ‘date’: row.dimension_values[0].worth,
    ‘supply’: row.dimension_values[1].worth,
    ‘medium’: row.dimension_values[2].worth,
    ‘periods’: row.metric_values[0].worth,
    ‘conversions’: row.metric_values[1].worth,
    ‘income’: row.metric_values[2].worth
    }
    for row in response.rows
    ])
    return ga_data

    def extract_facebook_ads(self):
    “””Get Fb marketing campaign efficiency”””
    from facebook_business.adobjects.adaccount import AdAccount

    ad_account = AdAccount(‘act_your-account-id’)
    campaigns = ad_account.get_campaigns(fields=[
    ‘name’, ‘spend’, ‘impressions’, ‘clicks’, ‘conversions’
    ])

    fb_data = pd.DataFrame([{
    ‘campaign_name’: campaign[‘name’],
    ‘spend’: float(marketing campaign[‘spend’]),
    ‘impressions’: int(marketing campaign[‘impressions’]),
    ‘clicks’: int(marketing campaign[‘clicks’]),
    ‘conversions’: int(marketing campaign.get(‘conversions’, 0))
    } for marketing campaign in campaigns])

    return fb_data

    def transform_and_analyze(self, ga_data, fb_data):
    “””Calculate ROI and buyer lifetime worth”””
    # Clear Google Analytics knowledge
    ga_data[‘revenue’] = pd.to_numeric(ga_data[‘revenue’], errors=’coerce’)
    ga_data[‘conversions’] = pd.to_numeric(ga_data[‘conversions’], errors=’coerce’)

    # Calculate metrics
    ga_summary = ga_data.groupby([‘source’, ‘medium’]).agg({
    ‘periods’: ‘sum’,
    ‘conversions’: ‘sum’,
    ‘income’: ‘sum’
    }).reset_index()

    ga_summary[‘conversion_rate’] = ga_summary[‘conversions’] / ga_summary[‘sessions’]
    ga_summary[‘revenue_per_session’] = ga_summary[‘revenue’] / ga_summary[‘sessions’]

    # Calculate Fb ROI
    fb_data[‘roi’] = (fb_data[‘conversions’] * 50 – fb_data[‘spend’]) / fb_data[‘spend’] # Assuming $50 common order worth
    fb_data[‘cost_per_conversion’] = fb_data[‘spend’] / fb_data[‘conversions’].change(0, 1)

    return ga_summary, fb_data

    def load_to_dashboard(self, ga_summary, fb_data):
    “””Save outcomes and set off dashboard replace”””
    # Save to database
    ga_summary.to_sql(‘ga_performance’, self.db_connection, if_exists=’change’)
    fb_data.to_sql(‘fb_performance’, self.db_connection, if_exists=’change’)

    # Create abstract report
    report = {
    ‘date’: datetime.now().strftime(‘%Y-%m-%d’),
    ‘top_ga_source’: ga_summary.loc[ga_summary[‘revenue’].idxmax(), ‘supply’],
    ‘best_fb_campaign’: fb_data.loc[fb_data[‘roi’].idxmax(), ‘campaign_name’],
    ‘total_revenue’: ga_summary[‘revenue’].sum(),
    ‘total_ad_spend’: fb_data[‘spend’].sum()
    }

    # This might set off e mail alerts, Slack notifications, and so on.
    print(f”Pipeline accomplished: Generated ${report[‘total_revenue’]:.2f} income from ${report[‘total_ad_spend’]:.2f} advert spend”)
    return report

    # Run the pipeline
    if __name__ == “__main__”:
    pipeline = MarketingPipeline()

    # Extract knowledge
    ga_data = pipeline.extract_google_analytics()
    fb_data = pipeline.extract_facebook_ads()

    # Remodel knowledge
    ga_summary, fb_summary = pipeline.transform_and_analyze(ga_data, fb_data)

    # Load outcomes
    report = pipeline.load_to_dashboard(ga_summary, fb_summary)



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    Previous ArticleWhat is OpenAI o3 and How is it Different than other LLMs?
    Next Article LLaVA on a Budget: Multimodal AI with Limited Resources
    FinanceStarGate

    Related Posts

    Machine Learning

    Mastering Prompting with DSPy: A Beginner’s Guide to Smarter LLMs | by Adi Insights and Innovations | Jun, 2025

    June 17, 2025
    Machine Learning

    The “Lazy” Way to Use DeepSeek to Make Money Online | by Tamal Krishna Chandra | Jun, 2025

    June 17, 2025
    Machine Learning

    ML Data Pre-processing: Cleaning and Preparing Data for Success | by Brooksolivia | Jun, 2025

    June 17, 2025
    Add A Comment
    Leave A Reply Cancel Reply

    Top Posts

    How You’ll Feel Reaching Various Millionaire Milestones ($1-$20M)

    May 8, 2025

    Forecasting 101: A Beginner’s Guide | by Ojaas Hampiholi | Mar, 2025

    March 8, 2025

    The Dangers of Deceptive Data–Confusing Charts and Misleading Headlines

    February 27, 2025

    Take Control of What Your Online Presence Says About You

    June 11, 2025

    AI ML Courses in Hyderabad | Best Artificial Intelligence | by Kalyanvisualpath | Apr, 2025

    April 19, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    Most Popular

    Google’s Largest Acquisition Is Cloud Security Platform Wiz

    March 20, 2025

    Accelerate Your Career with Zoople Technologies’ Machine Learning Training in Kochi | by Aswanisuresh | Apr, 2025

    April 24, 2025

    The Threat of AI to Biosecurity. An essay by Max Freedman | by Science Policy for All | Mar, 2025

    March 27, 2025
    Our Picks

    Apple iPhone Prices Could Rise to $3,500 if Made in the US

    April 12, 2025

    On-Device Machine Learning in Spatial Computing

    February 17, 2025

    How to Unlock Your Brand’s Potential Through Engaging Content

    May 8, 2025
    Categories
    • AI Technology
    • Artificial Intelligence
    • Data Science
    • Finance
    • Machine Learning
    • Passive Income
    • Privacy Policy
    • Disclaimer
    • Terms and Conditions
    • About us
    • Contact us
    Copyright © 2025 Financestargate.com All Rights Reserved.

    Type above and press Enter to search. Press Esc to cancel.